
Alternative Bloat Control Methods

Liviu Panait and Sean Luke

George Mason University, Fairfax, VA 22030
lpanait@cs.gmu.edu, sean@cs.gmu.edu

Abstract. Bloat control is an important aspect of evolutionary com-
putation methods, such as genetic programming, which must deal with
genomes of arbitrary size. We introduce three new methods for bloat con-
trol: Biased Multi-Objective Parsimony Pressure (BMOPP), the Wait-
ing Room, and Death by Size. These methods are unusual approaches
to bloat control, and are not only useful in various circumstances, but
two of them suggest novel approaches to attack the problem. BMOPP is
a more traditional parsimony-pressure style bloat control method, while
the other two methods do not consider parsimony as part of the selec-
tion process at all, but instead penalize for parsimony at other stages in
the evolutionary process. We find parameter settings for BMOPP and
the Waiting Room which are effective across all tested problem domains.
Death by Size does not appear to have this consistency, but we find it a
useful tool as it has particular applicability to steady-state evolution.

1 Introduction

When evolutionary computation uses arbitrary-sized representations, often the
evolutionary process drives not only towards fitter individuals, but often dramat-
ically larger individuals. This rapid increase in size, known as bloat (or as Bill
Langdon calls it, “survival of the fattest”) can hinder the evolutionary mecha-
nism itself and can slow successive generations to the point that further progress
is not feasible. Bloat occurs across the evolutionary computation landscape (for
example, [1,2]), but most attention paid to it has been in the context of genetic
programming (GP).

In this paper we will introduce three new methods for controlling bloat,
Biased Multi-Objective Parsimony Pressure, the Waiting Room, and Death by
Size respectively. These methods are effective, and some (such as Death by Size)
are applicable to special evolutionary methods such as steady-state evolution.
Because it is nearly always helpful, we combine the methods with the most
common method of GP bloat-control, namely establishing fixed limits on tree
depth, and compare them against using tree depth limits alone.

The dynamics of bloat are complex [3] and in the absence of a widely-accepted
generalized theory of bloat, most effective methods for dealing with the problem
are justified empirically. However empirical comparisons must take into consid-
eration two simultaneous, and often contradictory, objectives: increasing fitness
and reducing size. We will attempt to ascertain settings for these methods which

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 630–641, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Alternative Bloat Control Methods 631

seem to find a good middle-ground between these objectives: specifically, we view
one method as better than another if its fitness is not statistically significantly
worse, but its tree size is significantly smaller.

We begin with a discussion of previous approaches to bloat control. We then
introduce the new methods and argue for their effectiveness in a series of ex-
periments using various tree-style genetic programming test problems. We then
conclude with a brief discussion.

1.1 Previous Approaches to Bloat Control

The most common approach to bloat control is establishing hard limits on size
or depth, primarily because this approach was popularized by early work in
genetic programming [4]. In such tree-based genetic programming, if a newly-
created child is deeper than 17 nodes, it is rejected and a parent is introduced
into the population in its stead1. Depth limiting has been criticized in the past
for its effect on breeding [7], but it has proven a surprisingly successful method
[8,9]. In the experiments in this paper we will augment our new methods with
depth limiting (because in all cases it is beneficial to them), and compare this
combination against plain depth limiting alone.

Outside of genetic programming, the common alternative is parsimony pres-
sure, which includes the size of an individual as a factor in the selection proce-
dure. Parsimony pressure has often been parametric, meaning that it considers
the actual values of size and fitness together in a parametric statistical model
for selection. For example, one might compute fitness as a linear function of raw
fitness and size (for example, [10]) or use them together in a nonlinear fashion [2].
The problem with parametric parsimony pressure is that it requires the experi-
menter to state that N units of size are worth M units of raw fitness, but fitness
assessment procedures are usually ad-hoc. One of several undesirable effects is
that late in the evolutionary run, when all individuals have approximately the
same fitness, size begins to overwhelm the selection procedure.

Recent work has instead focused on so-called “nonparametric” parsimony
pressure methods, where the size and raw fitness values are not combined dur-
ing the selection process. Instead, selection methods compare sizes with sizes
and fitnesses with fitnesses. One example of nonparametric parsimony pressure
is lexicographic parsimony pressure [8]. Lexicographic parsimony pressure meth-
ods compare individuals first by fitness, and then by size only if there are ties
in fitness. Lexicographic parsimony pressure fails in some problem domains (no-
tably Symbolic Regression) where large swaths of individuals have completely
unique fitness values, and so size is rarely considered. The method can be im-
proved by bucketing the individuals by fitness. Here individuals are sorted by
fitness into N buckets, and if two individuals being compared are from the same
bucket, then size is used as the comparison. This has the effect of discretizing
1 Some depth limiting variants: [5] retries crossover some N times until it generates a

valid-depth child; and [6] dynamically expands the tree depth as fitter individuals
are discovered.

632 L. Panait and S. Luke

the fitness into classes. Related nonparametric parsimony pressure methods were
discussed in [9]. Specifically, in double tournament, selection is done by holding
several tournaments by size, and the winners of those tournaments then go on
to enter a final tournament by fitness. The alternative approach is proportional
tournament, where an ordinary tournament selection occurs, but first a coin toss
of probability p is held to determine whether the tournament will select based on
size or on fitness. A related technique is the Tarpeian method, whereby a ran-
dom subset of above-average-sized individuals are simply eliminated from the
population [11].

There is also some literature on treating size as an alternative objective in
a pareto-optimization scheme [12,13,14]. In a pareto scheme, individual A is
said to dominate individual B if A is as good as B in all objectives (fitness,
size) and is better than B in at least one objective. This family of methods use
one of several multi-objective optimization algorithms to discover the “front”
of solutions which are dominated by no one else. The literature has had mixed
results, primarily because nondominated individuals tend to cluster near the
front extremes of all-fitness or all-size, and a highly fit but poorly sized individual
is undesirable, as is a tiny but highly unfit individual. [13] has tackled this
problem successfully by introducing diversity preferences into the pareto system,
thereby discouraging these clusters.

2 Three New Bloat Control Methods

In this paper we introduce three new bloat control methods and examine
their performance. The first method, Biased Multi-Objective Parsimony Pres-
sure (BMOPP) is another variation on the pareto-optimization theme which
combines lexicographic ordering, pareto dominance, and a proportional tour-
nament. This admittedly convoluted-sounding method is in fact quite easy to
implement, is effective, and (unlike many multi-objective approaches) may easily
be combined with common evolutionary computation algorithms.

The remaining two methods are unusual in that size is not considered in the
selection process at all, but rather it plays a factor in punishing the individual in
other parts of the evolutionary cycle. In The Waiting Room, newly-created indi-
viduals are not permitted to enter the population until they have sat in a queue
(the “waiting room”) for a period of time proportional to their size. This gives
small individuals an advantage in that they may spread more rapidly through
the population2. Finally, Death by Size works with those evolutionary methods
2 We mention as an aside one bloat-control approach which is related to the waiting

room but which we have not found to be effective: asynchronous island models.
Island models connect parallel evolutionary processes via a network; every so often an
evolutionary processes will “migrate” individuals to other processes over the network.
In an asynchronous island model the processes are not synchronized by generation,
but may run at their own pace. In theory processes with smaller individuals should
run faster, and hence migrate more individuals to other processes, and those migrants
will tend to be small. This gives small individuals a chance to spread throughout the

Alternative Bloat Control Methods 633

which must choose individuals to die and be replaced — in our experiments, we
used steady state evolution. While individuals are selected for breeding using
fitness, they are selected for death and replacement using size.

2.1 Biased Multi-objective Parsimony Pressure

One of the problems with pareto-based multiobjective methods is that they
consider any point along the front to be a valid candidate. Thus it is easy to
generate individuals at one extreme of the Pareto front, namely individuals with
small tree sizes but terrible fitness values. Usually, however, the experimenter
is more interested in the other extreme: highly fit individuals. The idea behind
the Biased Multi-Objective Parsimony Pressure (BMOPP) is to bias the search
along the front towards the fitness end of the gamut.

BMOPP, like other pareto methods, uses fitness and size as its two objectives.
At each generation, BMOPP places each individual into a Pareto layer as follows.
First, individuals along the nondominated front of the two objectives are assigned
to layer 1. Those individuals are then removed from consideration, and a new
front is computed from among the remaining individuals. Individuals in that
new front are assigned to layer 2 and removed from consideration, another new
front is then computed, and so on.

After Pareto layers have been established, individuals are selected using a
form of tournament selection which, with probability P , compares individuals
based solely on their fitnesses, and with probability 1 − P compares them based
on their respective Pareto layers (lower layers being preferred). Ties are broken
using the alternative comparison (fitness or Pareto layer). If both individuals
are identical in fitness and in layer, one individual is chosen at random. The
particular value of P is of interest to us: as P increases, selection is more likely
to be based on tree size and less likely to be based on fitness. If P = 1, BMOPP
is exactly lexicographic tournament. If P = 0, BMOPP is entirely pareto-based.

2.2 The Waiting Room

In The Waiting Room newly-created individuals are punished for being large by
being placed in a queue (the “waiting room”) prior to entry into the popula-
tion. Let the population size be N . At each generation, some RN newly-created
individuals are evaluated, then added to the waiting room. R > 1, and so the
waiting room will be larger than the final population size. Each individual in the
waiting room is assigned a queue value equal to the individual’s size. Next, the
N children with the smallest queue values are removed from the waiting room
and form the next generation. The remaining individuals have their queue values
multiplied by a cut-down value A between 0 and 1. A prevents queue stagna-
tion: eventually even giant individuals may have a chance to be introduced to
the population.

network more rapidly. While we have not been able to get an asynchronous island
model on its own to produce sufficiently parsimonious results, nonetheless we find
the notion intriguing enough to be worth mentioning.

634 L. Panait and S. Luke

Artificial Ant Symbolic Regression

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

50

100

150

200

250

M
ea

n
T

re
e

S
iz

e
of

R
un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

20

40

60

80

M
ea

n
T

re
e

S
iz

e
of

R
un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

11-bit Boolean Multiplexer Even 5-Parity

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

0

50

100

150

200

250

M
ea

n
T

re
e

S
iz

e
of

R
un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

0

50

100

150

200

250

300

350

M
ea

n
T

re
e

S
iz

e
of

R
un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

Fig. 1. Mean tree sizes for BMOPP in combination with depth limiting, as compared
to depth limiting alone (labeled D). The size of the tournament selection which selects
between lexicographic tournaments (layer, fitness) and (fitness, layer) is labeled P. The
mean of each distribution is indicated with an ×.

The idea of the waiting room is that smaller individuals get to compete
in the evolutionary process sooner, and thus spread (smaller) genetic material
more rapidly. Our implementation of the waiting room allows it to grow with-
out bound; but we imagine that real-world implementations would require some
maximum size. Besides memory concerns, naive implementations of the waiting
room impose significant computational complexity by cutting down individuals
by A each time. We suggest using a binomial heap, and introducing new individ-
uals to the queue by multiplying them by some increasingly large number (the
inverse of A) rather than decreasing A for the existing individuals in the heap.
This imposes at most an O(lg |Waiting Room|) cost per selection.

2.3 Death by Size

The two methods presented so far, and indeed all of our previously discussed
methods, are designed for generational evolutionary computation. In contrast,
Death by Size is intended for methods such as steady-state evolution which re-
quire a procedure for marking individuals for death. Death by Size is very simple:
use fitness to select individuals for breeding, as usual, but when selecting an in-
dividual for death, select by size (preferring to kill larger individuals). In our

Alternative Bloat Control Methods 635

Artificial Ant Symbolic Regression

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

0

10

20

30

40

50

B
es

tF
itn

es
s

of
R

un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

0

1

2

3

B
es

tF
itn

es
s

of
R

un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

11-bit Boolean Multiplexer Even 5-Parity

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

0

200

400

600

B
es

tF
itn

es
s

of
R

un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D
Parsimony Pressure

0

2

4

6

8

10

12

14

B
es

tF
itn

es
s

of
R

un

P: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 D

Fig. 2. Best fitnesses of run for BMOPP in combination with depth limiting, as com-
pared compared to depth limiting alone (labeled D). The size of the tournament se-
lection which selects between lexicographic tournaments (layer, fitness) and (fitness,
layer) is labeled P. The mean of each distribution is indicated with an ×.

experiments we used steady-state evolution, with tournament selection for both
selection procedures.

3 Experiments

The bloat-control technique most used in the literature is Koza-style depth lim-
iting. Like most of the literature, we compare our technique against it, and
maintain the traditional depth of 17 to stay relevant for comparison. As it turns
out, depth limiting can be easily added to the parsimony techniques presented
in this paper. As our focus is in creating efficient methods to control bloat, we
decided to augment our parsimony techniques with depth limiting.

The experiments used population sizes of 1000, run for 50 generations. Sim-
ilarly, the waiting room method was stopped after evaluating 50000 individuals.
The runs did not stop when an ideal individual was found. Unless stated other-
wise, generational GP runs used plain tournament selection of size 7. We chose
four problem domains: Artificial Ant, 11-bit Boolean Multiplexer, Symbolic Re-
gression, and Even-5 Parity. We followed the parameters specified in these four
domains as set forth in [4], as well as its breeding, selection, and tree generation
parameters. Artificial Ant used the Santa Fe food trail. Symbolic Regression used

636 L. Panait and S. Luke

Artificial Ant Symbolic Regression

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

50

100

150

200

250

M
ea

n
T

re
e

S
iz

e
of

R
un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

0

10

20

30

40

50

60

70

M
ea

n
T

re
e

S
iz

e
of

R
un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

11-bit Boolean Multiplexer Even 5-Parity

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

0

50

100

150

200

250

M
ea

n
T

re
e

S
iz

e
of

R
un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

0

50

100

150

200

250

300

350

M
ea

n
T

re
e

S
iz

e
of

R
un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

Fig. 3. Mean tree sizes for the waiting room parsimony pressure method in combination
with depth limiting, as compared compared to depth limiting alone (labeled D). The
ratio of waiting room to the population size is labeled R, and the aging rate is labeled
A. The mean of each distribution is indicated with an ×.

the quartic polynomial fitness function and no ephemeral random constants. The
evolutionary computation system used was ECJ [15]. ECJ augments standard
tournament selection with a the addition of legal real-valued “tournament sizes”
ranging from 1.0 to 2.0. For a tournament size P in this range, two individuals
are selected, and the better is returned with probability P/2; with probability
1 − P/2, a random individual is returned.

Our statistical analysis of the results used the Welch’s two-sample test. In
the Artificial Ant, 5-Bit Parity and 11-Bit Multiplexer domains, we compared
results for each setting against the results of depth limiting alone. In the Symbolic
Regression domain, we first computed ranks for the results of the two methods,
and then used Welch’s test directly on the ranks, in order to compensate for
Symbolic Regression’s non-normality in fitness. We used 95% confidence level
for tests on best fitnesses of run, but used 99.98864% confidence level (derived
from Bonferroni’s inequality) for all tests on mean tree size. The reason for this
was to be conservative when reporting better tree size at the same fitness level.

In all graphs, lower fitness is better, and the rightmost bar (labeled D) rep-
resents plain depth-limiting alone.

Alternative Bloat Control Methods 637

Artificial Ant Symbolic Regression

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

0

10

20

30

40

B
es

tF
itn

es
s

of
R

un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

0

5

10

15

20

B
es

tF
itn

es
s

of
R

un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

11-bit Boolean Multiplexer Even 5-Parity

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

0

200

400

600

B
es

tF
itn

es
s

of
R

un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0

D

Parsimony Pressure

0

2

4

6

8

10

12

B
es

tF
itn

es
s

of
R

un

R : 10
A : 5,3,1,0

R : 5.0
A : 5,3,1,0

R : 2.0
A : 5,3,1,0

R : 1.25
A : 5,3,1,0

R : 1.125
A : 5,3,1,0 D

Fig. 4. Best fitnesses of run for the waiting room parsimony pressure method in com-
bination with depth limiting, as compared compared to depth limiting alone (labeled
D). The ratio of waiting room to the population size is labeled R, and the aging rate
is labeled A. The mean of each distribution is indicated with an ×.

3.1 Biased Multi-objective Parsimony Pressure

Figures 1 and 2 show the mean tree size and best fitness of run for the experi-
ments on the BMOPP method in combination with depth limiting. The extremes
of tournament size (P = 1 and P = 2.0) represent pure pareto multiobjective
optimization and pure lexicographic ordering, respectively.

The aim is to achieve lower tree sizes while at least maintaining equivalent
fitness to depth limiting alone. In the Artificial Ant domain, this occurred when
P ranged from 1.7 to 2.0. For the Multiplexer domain: 1.9 and 2.0. For Parity:
1.8 to 2.0. For Symbolic Regression: 1.5, 1.8, and 1.9.

As expected, smaller values of P add more parsimony pressure to the search
process: this significantly reduces the tree size, but usually this comes at the
expense of fitness. Overall, the mild value of 1.9 for P significantly reduced
bloat without affecting fitness in all problem domains in our experiments.

3.2 The Waiting Room

Figures 3 and 4 show the mean tree size and best fitness of run for the experi-
ments on the waiting room method in combination with depth limiting. There

638 L. Panait and S. Luke

Artificial Ant Symbolic Regression

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

100

200

300

400

500

M
ea

n
T

re
e

S
iz

e
of

R
un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

25

50

75

100

125

150

175

M
ea

n
T

re
e

S
iz

e
of

R
un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

11-bit Boolean Multiplexer Even 5-Parity

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

100

200

300

400

500

M
ea

n
T

re
e

S
iz

e
of

R
un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

100

200

300

400

M
ea

n
T

re
e

S
iz

e
of

R
un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

Fig. 5. Mean tree sizes for the death by size parsimony pressure method in combination
with depth limiting, as compared compared to depth limiting alone (labeled D). The
size of the selection tournament is labeled S, and the size of the de-selection tournament
is labeled R. The mean of each distribution is indicated with an ×.

are two parameters: the ratio R of the size of the waiting room relative to the
population size; and the cut-down parameter A. Generally smaller values of R
and larger values of A resulted in smaller tree sizes.

The results in the Artificial Ant domain show no degradation in the fitness of
the individuals, but the the tree size is significantly reduced in all cases with the
exception of (R=10, A=5) and (R=1.125, A=5, 3, 0). Interestingly, the mean tree
size of run is reduced by as much as 5 times for (R=10, A=3). The Multiplexer
domain is difficult for the waiting room algorithm. Only a few settings have
similar fitness and better tree sizes than depth limiting: (R=1.25, A=1) and
(R=1.125, A=3, 1). The results in the 5 Bit Parity domain are similar to the
ones obtained in the Multiplexer domain: only (R=1.125, A=5, 3, 0) had similar
fitness and smaller trees than depth limiting alone. Symbolic Regression yielded
better results: (R=1.25, 1.125, A=5, 3, 1, 0) and (R=1, A=5, 3, 0).

Overall, it appears that a small pressure for parsimony significantly reduces
the mean tree size of individuals, but does not significantly hinder the perfor-
mance of the search process. This implies that the size of the waiting room will
not increase substantially, which is also good news. The setting (R=1.125, A=3)
appears to perform well across all four domains.

Alternative Bloat Control Methods 639

Artificial Ant Symbolic Regression

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

10

20

30

40

50

B
es

tF
itn

es
s

of
R

un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

2.5

5

7.5

10

12.5

15

17.5

B
es

tF
itn

es
s

of
R

un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

11-bit Boolean Multiplexer Even 5-Parity

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

200

400

600

B
es

tF
itn

es
s

of
R

un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0

D

Parsimony Pressure

0

2

4

6

8

10

12

14

B
es

tF
itn

es
s

of
R

un

S : 2
R : 1.0 � 2.0

S : 3
R : 1.0 � 2.0

S : 5
R : 1.0 � 2.0

S : 7
R : 1.0 � 2.0 D

Fig. 6. Best fitnesses of run for the death by size parsimony pressure method in com-
bination with depth limiting, as compared compared to depth limiting alone (labeled
D). The size of the selection tournament is labeled S, and the size of the de-selection
tournament is labeled R. The mean of each distribution is indicated with an ×.

3.3 Death by Size

Figures 5 and 6 show the mean tree size and best fitness of run for the exper-
iments on the death by size method in combination with depth limiting. We
varied two parameters: S is the size of the tournament selection (based on fit-
ness) to pick individuals to breed. R is the size of the tournament selection
(based on size) for individuals to die and be replaced.

In the Artificial Ant domain, the following (S, R) tournament size settings
resulted in similar fitnesses to depth limiting: (2, 1.4), (3, 1.6), (3, 1.8), (3, 2.0),
(5, 1.8), (7, 1.4), (7, 1.6), and (7, 2.0). Of them, (7, 1.4) and (7, 1.6) resulted
in similar tree sizes, while all others settings had a smaller mean tree size. In
particular, tree size was halved by the (2, 1.4), (3, 1.6), (3, 1.8) and (5, 1.8)
settings, and it was reduced by a factor of three when using (3, 2.0). In the 5-Bit
Parity domain, the following settings had similar best fitness of run: (7, 1.2),
(7, 1.4) and (7, 2.0). Of them, only (7, 2.0) yielded significantly smaller mean
tree sizes. In the Symbolic Regression domain, the following settings had both
similar best fitness of run and lower mean tree size: (2, 1.0), (2, 1.2), (3, 1.2),
(3, 1.4), (5, 1.6), (5, 1.8), (7, 1.6), (7, 1.8) and (7, 2.0).

Unfortunately in the Multiplexer domain, no setting yielded both smaller
tree sizes and equivalent fitness values as plain depth limiting. We believe that

640 L. Panait and S. Luke

the Multiplexer problem domain provides a difficult testbed for steady-state
approaches, and we plan to investigate this issue further.

As expected, higher values of R bias the search process more towards smaller
individuals, while higher values of S bias towards higher fitness at the expense of
parsimony. (7, 2.0) appears to be a good combination across all domains except
for Multiplexer.

4 Conclusion

This paper introduced three new techniques for controlling bloat, each with
different approaches to penalizing bloated individuals: Biased Multi-Objective
Parsimony Pressure (BMOPP), the Waiting Room, and Death by Size. BMOPP
uses fitness and tree size together to compute Pareto nondominated layers, which
are later used in combination with fitness to compare individuals. The Waiting
Room penalizes new, large children by delaying their entry into the evolutionary
process. Death by Size uses a steady-state setting where bigger individuals are
more likely to be replaced by newly created children.

We tested these three bloat control methods on four traditional GP bench-
marks, and found that they were able to reduce the mean tree size of individuals
evaluated without degradation in best fitness of run. Biased Multi-Objective
Parsimony Pressure and the Waiting Room allow for settings that perform well
across all four domains. The results of Death by Size suggest that the 11-Bit
Multiplexer domain may be a particularly difficult testbed for steady-state ap-
proaches. However, we found settings that performed well in all other three
domains, and we believe this method may be a useful tool due to its unusual
application to steady-state evolution.

Our future work will provide comparative examinations of the many bloat
control methods proposed in the literature. We also plan to investigate the ap-
plicability of these techniques to non-GP environments as well.

References

1. Smith, S.F.: A Learning System Based on Genetic Adaptive Algorithms. PhD
thesis, Computer Science Department, University of Pittsburgh (1980)

2. Bassett, J.K., De Jong, K.A.: Evolving behaviors for cooperating agents. In:
International Syposium on Methodologies for Intelligent Systems. (2000) 157–165

3. Luke, S.: Issues in Scaling Genetic Programming: Breeding Strategies, Tree Gener-
ation, and Code Bloat. PhD thesis, Department of Computer Science, University
of Maryland, A. V. Williams Building, University of Maryland, College Park, MD
20742 USA (2000)

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

5. Martin, P., Poli, R.: Crossover operators for A hardware implementation of GP
using FPGAs and Handel-C. In: GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, New York, Morgan Kaufmann Publishers
(2002) 845–852

Alternative Bloat Control Methods 641

6. Silva, S., Almeida, J.: Dynamic maximum tree depth. In: Genetic and Evolutionary
Computation – GECCO-2003, Chicago, Springer-Verlag (2003) 1776–1787

7. Haynes, T.: Collective adaptation: The exchange of coding segments. Evolutionary
Computation 6 (1998) 311–338

8. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: GECCO-2002: Proceed-
ings of the Genetic and Evolutionary Computation Conference, Morgan Kauffman
(2002) 829–836

9. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure.
In Merelo Guervós, J.J., Adamidis, P., Beyer, H.G., Fernández-Villacañas, J.L.,
Schwefel, H.P., eds.: Proceedings of the International Conference on Parallel Prob-
lem Solving from Nature (PPSN VII), Springer-Verlag (2002) 411–421

10. Burke, D.S., De Jong, K.A., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting
more genetics into genetic algorithms. Evolutionary Computation 6 (1998) 387–410

11. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Genetic Programming, Proceedings of EuroGP’2003, Springer-
Verlag (2003) 204–217

12. Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming:
Reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolution-
ary Computation, IEEE Press (2001) 536–543

13. de Jong, E.D., Pollack, J.B.: Multi-objective methods for tree size control. Genetic
Programming and Evolvable Machines 4 (2003) 211–233

14. Ekart, A., Nemeth, S.Z.: Selection based on the pareto nondomination criterion
for controlling code growth in genetic programming. Genetic Programming and
Evolvable Machines 2 (2001) 61–73

15. Luke, S. ECJ 10 : An Evolutionary Computation research system in Java. Available
at http://www.cs.umd.edu/projects/plus/ec/ecj/ (2003)

	Introduction
	Previous Approaches to Bloat Control

	Three New Bloat Control Methods
	Biased Multi-objective Parsimony Pressure
	The Waiting Room
	Death by Size

	Experiments
	Biased Multi-objective Parsimony Pressure
	The Waiting Room
	Death by Size

	Conclusion

